

UiT The Arctic University of Norway

Extended Reality Laboratory

XR - LAB

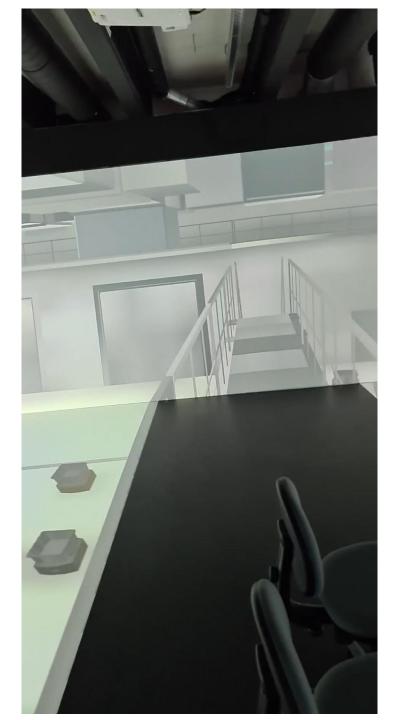
Marius Wang Department of Industrial Engineering, UiT

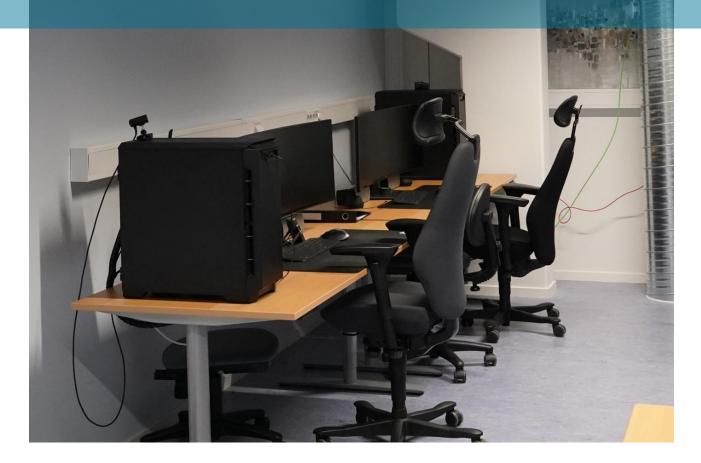


Virtual Reality

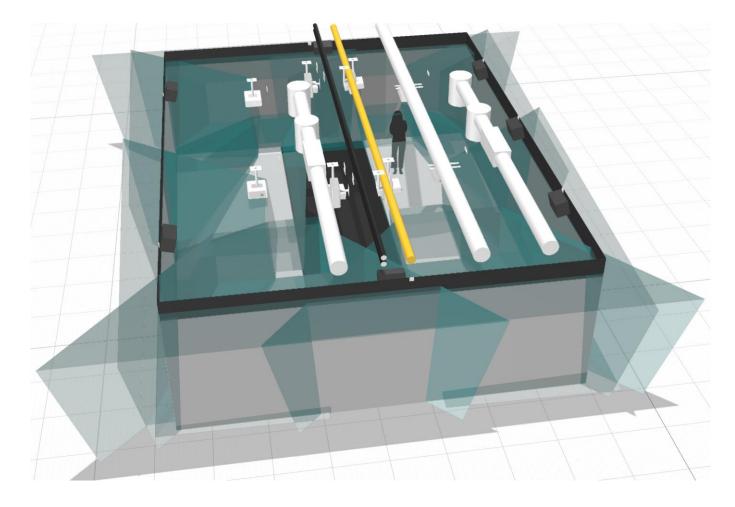
Virtual Reality

Virtual Reality

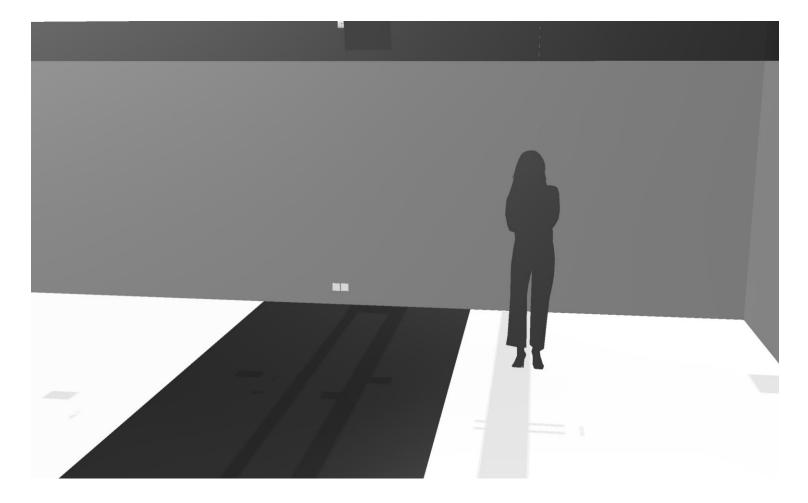

Augmentet Reality



AR MR + VR + = XR



2 computers built for VR and graphics



10 x 7,6 meters

2,5 meters

Additive Manufacturing

Marius Wang Department of Industrial Engineering, UiT

AM manufacturing technologies

The large variety of different AM techniques and materials were developed for various applications and needs. Most materials are assigned to certain AM processes, but new and more universal materials are being developed and have the potential to expand out of process specifics.

Metal AM manufacturing methods can be divided into 2 main categories:

- Melting or softening material
- Solid-state joining

Manufacturing methods	Schematic	Techniques
1. Melting or softening materials		
Laser melting	Powder Roller Object/Part New Powder Slock Build Platform	 Powder bed fusion Selective Laser Melting (SLM) Selective Laser Sintering (SLS) Direct Metal Laser Sintering (DMLS) Electron Beam Manufacturing (EBM)
	Process direction Powder Feed Nozzle Powder delivery angle d. Powder delivery angle d. Powder nozzle stand off distance	 Direct energy deposition Direct Metal Deposition (DMD) Laser Powder Deposition (LPD) Selective Laser Cladding (SLC) Electron Beam Direct Melting (EBDM)
Extrusion process	Material Sport	 Fused Deposition Modelling (FDM) Robocasting or Direct Ink Writing (DIW) Shaped Metal Deposition (SMD)
Material and Binder jetting	Peeder Roder Peeder Roder New Proder Disc. New Proder Disc. Peeder Roder Disc. Peeder Roder Disc. Disc	 Inkjet Printing (IJP) Ballistic Particle Manufacturing (BPM) M-Print Droplet-Based Metal Manufacturing (DMM)
2. Solid-state joining		
Material adhesion	Cross Hatched Mirror	 Laminated Object Manufacturing (LOM)

What affects material choice?

- Part design, design features
- AM machine
- Post-processing
- Type of industry
- Location of the company and customers
- Customer needs / market demands
- Raw material suppliers
- Raw material price
- Build volume
- Building technology
- Build rate
- Additional cost

AM metals

- Stainless steel *316L*, *15-5PH*, *17-4PH* (630)
- Tool steel H13, A2, D2, Maraging 300, Maraging 2
- Steel
- Titanium
- Aluminium AlSi12, AlSi10Mg
- Copper
- Bronze
- Cobalt Chrome Co28Cr6Mo
- Titanium alloys Ti6AI4V, Ti6AL-4V ELI
- Nickel Alloys Inconel 625, 713, 718, 738
- Gold
- Silver
- Platinum
- Palladium

Common AM alloys and applications

Alloys Applications	Aluminium	Maraging steel	Stainless steel	Titanium	Cobalt chrome	Nickel alloys	Precious metals
Aerospace	х		х	х	x	х	
Medical			х	х	x		x
Energy, oil and gas			х				
Automotive	x		х	х			
Marine			х	х			
Machinability and weld ability	x		х	х		х	
Corrosion resistance			х	х	x	х	
High temperature			х	х		х	
Tools and moulds		x	х				
Consumer products	x		х				x

Progress in Materials Science

Additive manufacturing of metallic components - Process,

structureand properties

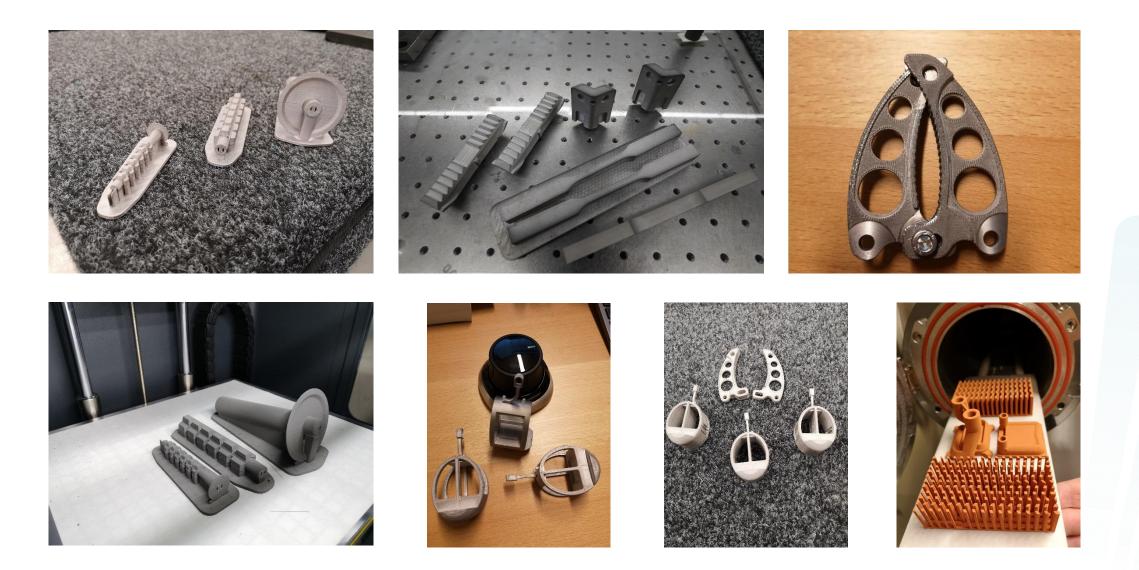
T. DebRoya, ît, H.L. Wei a, J.S. Zubacka, T. Mukherjeea, J.W. Elmer b, J.O. Milewskic, A.M. Beesea,

A. Wilson-Heid a, A. Ded, W. Zhang e

Our metal AM equipment

<u>Metal X</u>

Metal X by Markforged with ADAM (Atomic Diffusion Additive Manufacturing) technology. Metal X manufactures parts from filament roll with metal powder bound in a plastic matrix. The material is fed through a nozzle, like in desktop printers, and laid down layer by layer on the building platform. The printed part is submerged into debinder (Wash-1) for wax binder material removal. The last stage of the manufacturing is done in the furnace (Sinter-1) where the part is sintered to fuse powder into solid metal (\approx 99%).



Print volume XYZ:	300 mm x 220 mm x 180 mm
Max part size:	250 x 183 x 150 mm, 10 kg
Print chamber:	Heated
Print system:	2 nozzles, metal material and support release, 0.4 mm
Layer resolution:	0.1 – 0.4 mm
Dimensional accuracy:	±0.3mm
Resolution:	50 - 200 micron
Max hot end T °C:	300 °C
Build surface material:	Vacuum sealed print sheet
Max build surface T °C:	120 °C
Levelling:	Automatic table levelling
Material diameter:	3.00 mm
Build materials:	Stainless steel 17-4 PH, H13 tool steel, A2 tool steel,
	Copper, Inconel 625, D2 tool steel
Support material:	Build material with a ceramic release layer
Firmware:	Eiger
Supported file formats:	.stl
Furnace volume:	Cylindrical ø140×305 mm
Max temperature:	1300 °C
Washing size:	356×254×203 mm
Washer volume:	18 356 ccm
Washing fluid:	Opteon Sion

Markforged materials – Mechanical Properties

	Name	Hardness	Tensile strength [MPa]	Yield strength [MPa]	Elongation at break [%]	Relative density [%]
ſ	Stainless steel 17-4	HRC 36 (HRC 33-40)	1250 (1190 - 1310)	1100 (1090 - 1170)	6 (6-10)	96
	A2 tool steel	HRC 50-63	-	1170	1	94.5-100
	H13 tool steel	HRC 40-46	1420-1580	800-1360	5-14	94.5-100
	Copper	HRC -	193-207	26-69	30-45	98
	D2 tool steel	HRC 55-62	-	1690-220	-	97-100
	Inconel 625	HRC 7-19	765-827	334-414	30-42	96.5-100

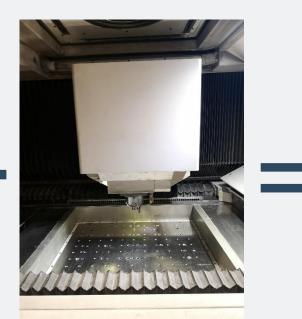
Examples of parts manufactured with the Metal X at the UiT Narvik

Matsuura LUMEX Avance-60 SLM Hybrid

This machine combines an advanced fusion of laser technology (laser selective sintering) and high-precision cutting technology (3-axis milling) enabling the whole new level of manufacturing. Machining operations during AM process (every 10th layer) allow to produce near net shape products with complex interior and exterior geometries, amazing surface finish and dramatically reduce production times.

Print volume XYZ:600 mm x 600 mm x 500 mmMax part size:600 x 600 x 500 mm, 1300 kgPrint chamber:Heated, sealed, Nitrogen filledLaser oscillator output range:100 - 960 WLaser wavelength:1070 ± 5 nmLayer resolution:0.1 - 0.4 mmLaser beam focus diameter:0.1 - 0.6 mmLayer thickness:0.05 mmScan speed:5.0 m/sBuild table:Heated, 40-120 °COrdered build materials:Stainless 630, Stainless 316L Aluminum AlSi10Mg, Maraging II, Cobalt Chrome, Titanium 6AI4V, Nickel alloy 718Gas supply:Argon, Nitrogen, AirMachining part Positioning accuracy XYZ:±0.0025 mmRepeatability XYZ:±0.001 mmRepeatability XYZ:±0.001 mmMax tool diameter:Ø 0.6 mmMax tool diameter:Ø 10 mmOperating system:Fanuc	AM part	SLS, Yb Fiber laser 1000W. water-cooled				
Print chamber:Heated, sealed, Nitrogen filledLaser oscillator output range:100 - 960 WLaser wavelength:1070 ± 5 nmLayer resolution:0.1 - 0.4 mmLaser beam focus diameter:0.1 - 0.6 mmLayer thickness:0.05 mmScan speed:5.0 m/sBuild table:Heated, 40-120 °COrdered build materials:Stainless 630, Stainless 316L Aluminum AlSi10Mg, Maraging II, Cobalt Chrome, Titanium 6AI4V, Nickel alloy 718Gas supply:Argon, Nitrogen, AirMachining partHigh-speed milling, 3-axisSpindle speed:450 - 45000 RPMPositioning accuracy XYZ:±0.001 mmTool storage capacity:20 pcMin tool diameter:Ø 0.6 mmMax tool diameter:Ø 10 mm	Print volume XYZ:	600 mm x 600 mm x 500 mm				
Laser oscillator output range:100 - 960 WLaser wavelength:1070 ± 5 nmLayer resolution:0.1 - 0.4 mmLaser beam focus diameter:0.1 - 0.6 mmLayer thickness:0.05 mmScan speed:5.0 m/sBuild table:Heated, 40-120 °COrdered build materials:Stainless 630, Stainless 316L Aluminum AlSi10Mg, Maraging II, Cobalt Chrome, Titanium 6AI4V, Nickel alloy 718Gas supply:Argon, Nitrogen, AirMachining part YYZ:High-speed milling, 3-axis \$pindle speed:450 - 45000 RPM ±0.0025 mmPositioning accuracy XYZ:±0.001 mm 20 pcMin tool diameter:Ø 0.6 mm Max tool diameter:	Max part size:	600 x 600 x 500 mm, 1300 kg				
range:Laser wavelength:1070 ± 5 nmLayer resolution:0.1 – 0.4 mmLaser beam focus0.1 – 0.6 mmdiameter:0.05 mmLayer thickness:0.05 mmScan speed:5.0 m/sBuild table:Heated, 40-120 °COrdered build materials:Stainless 630, Stainless 316LAluminum AlSi10Mg, Maraging II, Cobalt Chrome, Titanium 6AI4V, Nickel alloy 718Gas supply:Argon, Nitrogen, AirMachining partHigh-speed milling, 3-axisSpindle speed:450 – 45000 RPMPositioning accuracy XYZ:±0.001 mmTool storage capacity:20 pcMin tool diameter:Ø 0.6 mmMax tool diameter:Ø 10 mm	Print chamber:	Heated, sealed, Nitrogen filled				
Laser wavelength:1070 ± 5 nmLayer resolution:0.1 – 0.4 mmLaser beam focus0.1 – 0.6 mmdiameter:0.1 – 0.6 mmLayer thickness:0.05 mmScan speed:5.0 m/sBuild table:Heated, 40-120 °COrdered build materials:Stainless 630, Stainless 316LAluminum AlSi10Mg, Maraging II, Cobalt Chrome, Titanium 6AI4V, Nickel alloy 718Gas supply:Argon, Nitrogen, AirMachining partHigh-speed milling, 3-axisSpindle speed:450 – 45000 RPMPositioning accuracy XYZ:±0.0025 mmRepeatability XYZ:±0.001 mmTool storage capacity:20 pcMin tool diameter:Ø 0.6 mmMax tool diameter:Ø 10 mm	Laser oscillator output	100 - 960 W				
Layer resolution: $0.1 - 0.4 mm$ Laser beam focus $0.1 - 0.6 mm$ diameter: $0.05 mm$ Layer thickness: $0.05 mm$ Scan speed: $5.0 m/s$ Build table:Heated, $40-120 ^{\circ}C$ Ordered build materials:Stainless 630, Stainless 316LAluminum AlSi10Mg, Maraging II, Cobalt Chrome, Titanium 6Al4V, Nickel alloy 718Gas supply:Argon, Nitrogen, AirMachining partHigh-speed milling, 3-axisSpindle speed: $450 - 45000 RPM$ Positioning accuracy XYZ: $\pm 0.0025 mm$ Repeatability XYZ: $\pm 0.001 mm$ Tool storage capacity: $20 pc$ Min tool diameter: $\emptyset 0.6 mm$ Max tool diameter: $\emptyset 10 mm$	range:					
Laser beam focus diameter:0.1 – 0.6 mmLayer thickness:0.05 mmScan speed:5.0 m/sBuild table:Heated, 40-120 °COrdered build materials:Stainless 630, Stainless 316L Aluminum AlSi10Mg, Maraging II, Cobalt Chrome, Titanium 6AI4V, Nickel alloy 718Gas supply:Argon, Nitrogen, AirMachining partHigh-speed milling, 3-axisSpindle speed:450 – 45000 RPM ±0.0025 mmPositioning accuracy XYZ:±0.001 mm 20 pcMin tool diameter:Ø 0.6 mm Max tool diameter:	Laser wavelength:	1070 ± 5 nm				
diameter:Layer thickness:0.05 mmScan speed:5.0 m/sBuild table:Heated, 40-120 °COrdered build materials:Stainless 630, Stainless 316LAluminum AlSi10Mg, Maraging II, Cobalt Chrome, Titanium 6Al4V, Nickel alloy 718Gas supply:Argon, Nitrogen, AirMachining partHigh-speed milling, 3-axisSpindle speed:450 – 45000 RPMPositioning accuracy XYZ:±0.0025 mmRepeatability XYZ:±0.001 mmTool storage capacity:20 pcMin tool diameter:Ø 0.6 mmMax tool diameter:Ø 10 mm	Layer resolution:	0.1 – 0.4 mm				
Layer thickness:0.05 mmScan speed:5.0 m/sBuild table:Heated, 40-120 °COrdered build materials:Stainless 630, Stainless 316L Aluminum AlSi10Mg, Maraging II, Cobalt Chrome, Titanium 6Al4V, Nickel alloy 718Gas supply:Argon, Nitrogen, AirMachining partHigh-speed milling, 3-axisSpindle speed:450 – 45000 RPMPositioning accuracy ±0.0025 mmXYZ:±0.001 mmTool storage capacity:20 pcMin tool diameter:Ø 0.6 mmMax tool diameter:Ø 10 mm	Laser beam focus	0.1 – 0.6 mm				
Scan speed:5.0 m/sBuild table:Heated, 40-120 °COrdered build materials:Stainless 630, Stainless 316LAluminum AlSi10Mg, Maraging II, Cobalt Chrome, Titanium 6AI4V, Nickel alloy 718Gas supply:Argon, Nitrogen, AirMachining partHigh-speed milling, 3-axisSpindle speed:450 – 45000 RPMPositioning accuracy ±0.0025 mmKepeatability XYZ:±0.001 mmTool storage capacity:20 pcMin tool diameter:Ø 0.6 mmMax tool diameter:Ø 10 mm	diameter:					
Build table:Heated, 40-120 °COrdered build materials:Stainless 630, Stainless 316L Aluminum AlSi10Mg, Maraging II, Cobalt Chrome, Titanium 6AI4V, Nickel alloy 718Gas supply:Argon, Nitrogen, AirMachining partHigh-speed milling, 3-axisSpindle speed:450 – 45000 RPMPositioning accuracy ±0.0025 mmRepeatability XYZ:±0.001 mmTool storage capacity:20 pcMin tool diameter:Ø 0.6 mmMax tool diameter:Ø 10 mm	Layer thickness:	0.05 mm				
Ordered build materials:Stainless 630, Stainless 316L Aluminum AlSi10Mg, Maraging II, Cobalt Chrome, Titanium 6Al4V, Nickel alloy 718Gas supply:Argon, Nitrogen, AirMachining partHigh-speed milling, 3-axisSpindle speed:450 – 45000 RPMPositioning accuracy ±0.0025 mmRepeatability XYZ:±0.001 mmTool storage capacity:20 pcMin tool diameter:Ø 0.6 mmMax tool diameter:Ø 10 mm	Scan speed:	5.0 m/s				
Aluminum AlSi10Mg, Maraging II, Cobalt Chrome, Titanium 6AI4V, Nickel alloy 718Gas supply:Argon, Nitrogen, AirMachining partHigh-speed milling, 3-axisSpindle speed:450 – 45000 RPMPositioning accuracy ±0.0025 mmRepeatability XYZ:±0.001 mmTool storage capacity:20 pcMin tool diameter:Ø 0.6 mmMax tool diameter:Ø 10 mm	Build table:	Heated, 40-120 °C				
Chrome, Titanium 6AI4V, Nickel alloy 718Gas supply:Argon, Nitrogen, AirMachining partHigh-speed milling, 3-axisSpindle speed:450 – 45000 RPMPositioning accuracy XYZ:±0.0025 mmRepeatability XYZ:±0.001 mmTool storage capacity:20 pcMin tool diameter:Ø 0.6 mmMax tool diameter:Ø 10 mm	Ordered build materials:	Stainless 630, Stainless 316L				
Gas supply:Argon, Nitrogen, AirMachining partHigh-speed milling, 3-axisSpindle speed:450 – 45000 RPMPositioning accuracy XYZ:±0.0025 mmRepeatability XYZ:±0.001 mmTool storage capacity:20 pcMin tool diameter:Ø 0.6 mmMax tool diameter:Ø 10 mm		Heated, 40-120 °C Stainless 630, Stainless 316L Aluminum AlSi10Mg, Maraging II, Cobalt Chrome, Titanium 6Al4V, Nickel alloy 718				
Machining partHigh-speed milling, 3-axisSpindle speed:450 – 45000 RPMPositioning accuracy±0.0025 mmXYZ:±0.001 mmRepeatability XYZ:±0.001 mmTool storage capacity:20 pcMin tool diameter:Ø 0.6 mmMax tool diameter:Ø 10 mm						
Spindle speed:450 – 45000 RPMPositioning accuracy XYZ:±0.0025 mmRepeatability XYZ:±0.001 mmTool storage capacity:20 pcMin tool diameter:Ø 0.6 mmMax tool diameter:Ø 10 mm	Gas supply:	Argon, Nitrogen, Air				
Spindle speed:450 – 45000 RPMPositioning accuracy XYZ:±0.0025 mmRepeatability XYZ:±0.001 mmTool storage capacity:20 pcMin tool diameter:Ø 0.6 mmMax tool diameter:Ø 10 mm						
Positioning accuracy XYZ:±0.0025 mmRepeatability XYZ:±0.001 mmTool storage capacity:20 pcMin tool diameter:Ø 0.6 mmMax tool diameter:Ø 10 mm	Machining part	High-speed milling, 3-axis				
XYZ:Repeatability XYZ:±0.001 mmTool storage capacity:20 pcMin tool diameter:Ø 0.6 mmMax tool diameter:Ø 10 mm	Spindle speed:	450 – 45000 RPM				
Repeatability XYZ:±0.001 mmTool storage capacity:20 pcMin tool diameter:Ø 0.6 mmMax tool diameter:Ø 10 mm	Positioning accuracy	±0.0025 mm				
Tool storage capacity:20 pcMin tool diameter:Ø 0.6 mmMax tool diameter:Ø 10 mm	XYZ:	Aluminum AlSi10Mg, Maraging II, Cobalt Chrome, Titanium 6AI4V, Nickel alloy 718 Argon, Nitrogen, Air High-speed milling, 3-axis 450 – 45000 RPM ±0.0025 mm				
Min tool diameter:Ø 0.6 mmMax tool diameter:Ø 10 mm	Repeatability XYZ:	±0.001 mm				
Max tool diameter: Ø 10 mm	Tool storage capacity:	20 pc				
	Min tool diameter:					
Operating system: Fanuc	Max tool diameter:	Ø 10 mm				
	Operating system:	Fanuc				

Matsuura Powders – Mechanical Properties

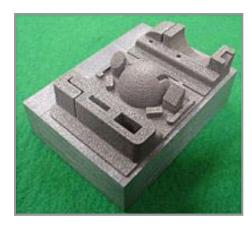

	Name	Comparable to	Particle size [µm]	Hardness	Tensile strength [MPa]	Yield strength [MPa]	Elongation at break [%]	Relative density [%]	Build rate [cm ³ /h]
	Maraging 2	1.2709	20-45	HRC 36 ± 1	1150 - 1200	1000 -1100	11 ± 1	≥ 99,5	7-11
	Titanium Ti 6Al4V	3.7165	10-45	HRC 48	460 – 530	420	1	≥ 99,5	4-8
ľ	Stainless 630	1.4542	10-45	HRC 32 ± 1	1070 - 1080	830 - 850	17 ± 1	≥ 99,5	7-11
	Stainless 316 L	1.4404	10-45	HV 200 ± 10	570 – 580	420-460	32,2 ± 2	≥ 99,5	7-11
ľ	Cobalt Chrome	Co-Cr	20-45	HRC 36 ± 1	1170 – 1200	870-900	15 ± 2	≥ 99,5	6-10
	Nickel Alloy 718	2.4668	10-45	HRC 27 ± 1	930 - 980	650-690	22 ± 5	≥ 99,5	7-11
	Aluminum Si10 Mg	AlSi10Mg	20-63	HBW 99 ± 3	400 - 420	220 - 240	8 ± 1	≥ 99,5	9-13

Hybrid Additive Manufacturing on the Matsuura LUMEX Avance-60

Machine architecture:

Selective Laser Melting/Powder Bed Fusion

Highspeed milling


LUMEX Avance-60

Hybrid AM:

• Design freedom of conventional SLM

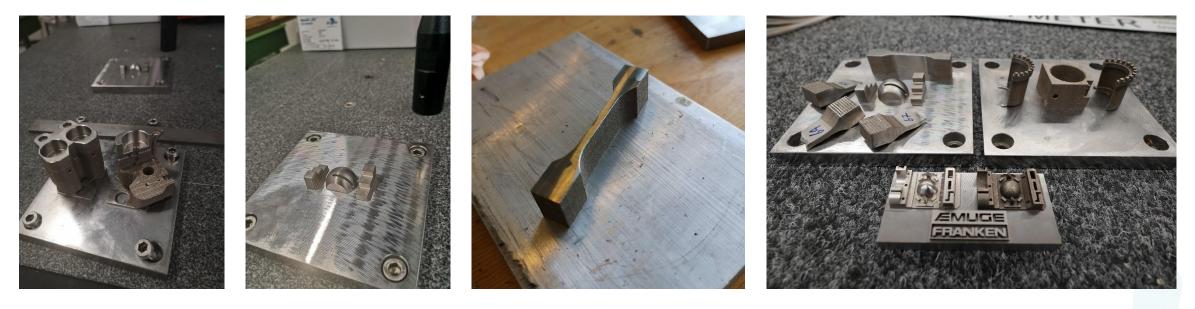
+

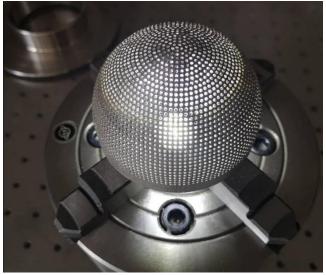
- In-process machining of difficult or impossible to reach surfaces
- Manufacturing of high-aspect-ratiofeatures (deep slots, channels...)
- Precise reference-/clampingsurfaces for post-processing (e.g. on multi-axis-machining centers)

Conventional SLM

- Precision: +/- 0,1 mm (up to +/- 0,05 mm)
- Surface roughness: R_z 50 μm (up to R_z 25 μm)

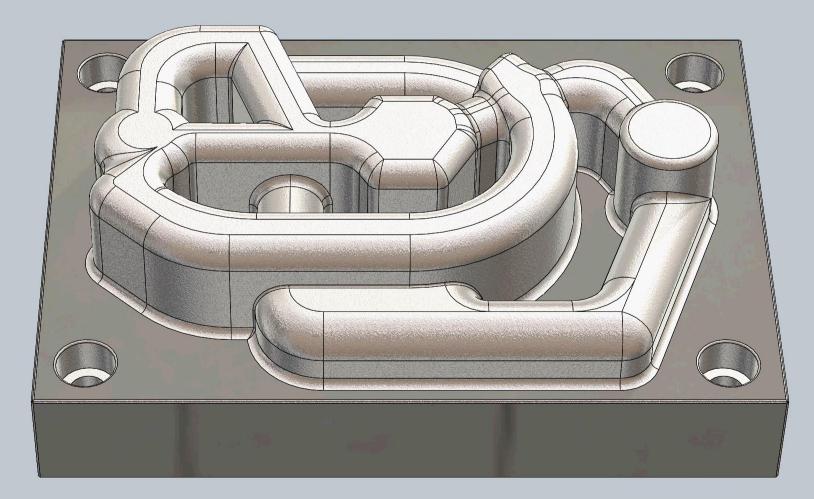
Hybrid AM on LUMEX


SLM-only:


٠

- machining
- Precision: at least +/- 0,1 mm (up to +/- 0,05 mm)
- Surface roughness:

 at least R_z 50 μm
 (up to R_z 25 μm)
 SLM + in-process
- Precision: +/- 0,025 mm
- (up tp +/- 0,005 mm)
- Surface roughness:
- R_z 10 μm (up to R_z 3,5 μm)


Examples of parts manufactured with the Matsuura Lumex at the UiT Narvik

Thank you for attention!

Marius Wang Department of Industrial Engineering, UiT

